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Notation and Terminology

"Ring” shall always mean, if not otherwise stated, commutative ring with an
identity element. A ring omomorphism shall always, if not otherwise stated,
map the identity element of the domain to the identity element of the codomain.
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Exercises






Chapter 1

Rings and Ideals

Exercise 1.1. Let = be a nilpotent element of a ring A. Show that 1+ z is a
unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.

Solution. If x is nilpotent, then ™ = 0 for some n € N. Now, using the identity

A+2)1—2+2— 4+ (=1)"2") =1+ (=1)" g
we have
A+2)1—z4+2>— -+ (=) Tz" H =14+ (-1)"2" =1

so 1+ x is a unit of A.

Let 2 be a nilpotent, and u a unit, then uv = 1 for some v € A. The element
vz is also a nilpotent, and so 1+vz is a unit. Finally u+z = u+uvze = u(l4vx)
is a unit. O

Ezercise 1.2. Let A be a ring and let Afz] be the ring of polynomials in an
indeterminate x, with coefficients in A. Let f(z) = ag+a1x+- - +anz™ € Alzx].
Prove that

1. f(x) is a unit in A[z] if and only if ag is a unit in A and a4, as, ..., a, are
nilpotent.
2. f(x) is nilpotent if and only if ag, a1, ..., a, are nilpotent.

3. f(x) is a zero-divisor if and only if there exists a # 0 in A such that

af(x)=0.
4. If f(x),g(x) € Alz], then f(x)g(x) is primitive if and only if f(z) and g(x)

are primitive.

Solution.

1. (a) If ap is a unit and aq, as, ..., a, are nilpotent in A, than ag is a unit
and a12,a222,...,a,2" are nilpotent in A[z], so f(x) is a unit in
Alx] for Exercise 1.1.
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(b) If f(x) is a unit in A[z], then there exists its inverse g(z) = by +
bz + -+ bya™. The first coefficient in f(z)g(x) is aobo, so it must
be agbg = 1, and ag is a unit. Now we show by induction on r that

al by =0,7=0,...,m (1.2.1)

Obviously a,b,, = 0, since this is the coefficient of 2" ™™ in f(z)g(x),
so (1.2.1) holds for r = 0. Now suppose (1.2.1) holds for r =
0,1,...,k; the coefficient of "™~ *+1) in f(z)g(z) is

Onbm—k—1 + an—1bpm—p + -+ ap_g—1bp =0

1+k
n

and multiplying this by a we get

ait+(k+1)bm,—(k+l) + anfla}j_kbmfk +-+ anfkflaﬁanbm = 07

using the inductive hypotesis

G:L+(k+1)bmf(k+1) =0,
so (1.2.1) is proved. In particular al*™bg = 0, but by is a unit, then
al*™ =0, and a,, is nilpotent. Then a,z™ is nilpotent in A[z], and,
being f(x) a unit, for Exercise 1.1 f(z) — apz™ = ap + a1z + -+ - +
an_12" ! is also a unit. It follows that a,_; is nilpotent, and so on.

2. (a) If ag,ay,...,a, are nilpotent, then ag, a1z, ..., a,z™ are nilpotent in
Alz], and so is f(z).

(b) If f(x) is nilpotent, then (f(x))* = 0 for some k € N. The coefficient
of z in (f(z))¥ is ak, so it must be a® = 0, that is, a,, is nilpotent,
and s0 is a,2™, and also f(x) — a,x™ = ag + a1 + -+ + ap_1x" L.

Hence a,,_1 is nilpotent, and so on.

3. Let g(z) = by + bixz + - -+ + byx™ be a polynomial of lowest degree such
that f(z)g(x) = 0. We prove by induction on r that

p—rg(z)=0,7=0,...,n (1.2.2)

Since anby, =0, ang(z) has degree at most m — 1, and as a,g(z) f(xz) =0,
it must be a,g(z) = 0, so (1.2.2) is proved for r = 0. Now suppose (1.2.2)
holds for r = 0,1,..., k. The coefficient of z"+™~( +1) in f(x)g(x) is

anbm—k—l + a'n—lbm—k +---+ an—k—lbm =0
whence, since the induction yields
anbm—k—l = an—lbm—k == an—kbm—l =0

we get ap_(p41)bm = 0. Again, a,_(,4+1)9(7) has degree less than m, and
since a,_(r4+1)9(x)f(x) = 0, it must be a,_41)9(x) = 0. So (1.2.2) is
proved. That is, a;b; = 0,7 =1,...,n,j = 1,...,m, which means that
bpf(z) =0, h=1,...,m holds too.

4. Let f(z) =ap+ a1z + -+ + ana™, glx) = by + b1z + -+ - + bpa™ € Alz].



(a) If f(xz)g(z) is primitive, then its coefficients generate A, but these
coefficients are both in (ag, a1, ...,a,) and in (bg, b1, ..., by), so also
f(z) and g(z) are primitive.

(b) Suppose f(z) and g(x) are primitive, while f(z)g(z) is not. Then its
coefficient generate a proper ideal, contained in a maximal ideal M.
The coefficients of f(z) and g(x) are not all in M, so let iy be such
that a;, ¢ M while a; € M,i=0,...,i9g — 1 if 49 > 0, and let jy be
such that b;, ¢ M while b; € M, j =0,...,j0 — 1 if jo > 1. The
coefficient of z%*70 in f(z)g(x) is

ig—1 Jo—1
¢ = aj,bj, + E @;ibigtjo—i + E ig+jo—5bj
i=0 Jj=0

where one of the two sums or both might not actually appear, if
19 = 0 or jo = 0 or both, and of course it is understood that a; = 0
if i >n and b; = 0 if j > m. In any case c and either sum that does
not vanish belong to M, so it should be a;,b;, € M too, which is
impossible.

O

Exercise 1.3. Generalize the results of Exercise 1.2 to a polynomial ring in
several indeterminates A[z1,...,x,).

Solution. Not yet available. O

Ezercise 1.4. In the ring A[z], the Jacobson radical is equal to the nilradical.

Solution. Since Ry C Ry always holds in any ring, we only have to show that
in Alz] R; C Ry holds too. Let p(z) = ap + a1z + -+ + apz™ € Ry; then
1—ap(z) =1—apxr — - —a,z""! is a unit by Proposition 1.9, and by Exercise
1.2 p(x) is nilpotent. O

FEzxercise 1.5.

Ezercise 1.6. Let A be a ring in wich every ideal not contained in the nilradical
contains a non-zero idempotent (that is, an element e such that e? = e # 0).
Then the nilradical and the Jacobson radical are equal.

Solution. As in Exercise 1.4 we need only show that Ry C Ry. Let x ¢ Ry.
Then (z) € Ry, so there is an element e € (x) such that e = e # 0. Let
e = xt, then 2%t? = xt, xt(1 — xt) = 0, which implies that 1 — 2t is not a unit,
so by Proposition 1.9 = ¢ R. O

Exercise 1.7. Let A be a ring in wich every element z satisfies ™ = x for some
n € N, n > 1, depending on z. Then every prime ideal in A is maximal.
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Solution: first way. Let p be a prime ideal in A. We shall prove that A/p is a
field. Let <  >= (x +p) # 0 in A/p. We have 2™ = z for some n € N, n > 1,
then < z >"=< 1z > in A/p, so < o >""!'=1, and also < # >"?< x >= 1,
since n — 2 > 0, thus < z > is a unit in A/p. O

Solution: second way. Let p be a prime ideal in A, x ¢ p. We shall prove that
() + p = A, hence p is maximal. We have 2™ = x for some n € N, n > 1, so
(2" —1) =0, then x(z"~! — 1) € p and also 2" "1 —1 € p, be 2"t —1 =p.
So1=a""1—pwitha" ! € (x)sincen—1>1,and —p € p. O

Exercise 1.8. If A is a ring, A # 0, the set of prime ideals of A has minimal
elements with respect to inclusion.

Solution. We need Zorn’s lemma. Call X the set of all prime ideals of A. Let
{ax}xea be a chain in X. Then

a:ﬂa,\

AEA

is an ideal. We show that a is prime, so that any chain in ¥ has a lower bound
in 3.

Let z,y € A such that zy € a. If x ¢ a, for some o € A and y ¢ ag for
some 3 € A, then either a, C ag or ag C a,; in the former case y ¢ a, also
holds, in the latter case = ¢ ag: both cases yield a contradiction, since zy € a,
and zy € ag, and both a, and ag are prime ideals. So either VA € Az € ay and
x €aor VA€ Ay € ay and y € a, which proves that a is a prime ideal.

Thus ¥ has minimal elements with respect to inclusion. O

Ezercise 1.9. If A is a ring, and a is a proper ideal of A, then a = r (a) if and
only if a is an intersection of prime ideals.

Solution. If r(a) = a, then by Proposition 1.14, a is an intersection of prime
ideals. If a is an intersection of prime ideals, then it is the intersection of all the
prime ideals which contain it, so, again by Proposition 1.14, a = r(a). O

Exercise 1.10. Let A be a ring, My its nilradical. The following facts are
equivalent:
i) A has exactly one prime ideal;
ii) every element of A is either a unit or a nilpotent;
iii) A/Ry is a field.
Solution.

e i) = 1i) Let p be the only prime ideal of A. Then Ry = p, so for each
a € A: if a € p, then a is nilpotent, if a ¢ p, then a does not belong to
any prime ideal of A, thus it is a unit.

o i) = qi7) If a ¢ My, then a is a unit, so M|y is maximal and A/Ry is a
field.



e iii) = i) If A/MRy is a field, then Ry is maximal, so it is the only prime
ideal.

O

Ezercise 1.11. If A is a boolean ring, then
1. 2z =0 for all x € A4;
2. every prime ideal p is maximal and A/p has two elements;
3. every finitely generated ideal of A is principal.

Solution.

L1+1=(1+1)22=(1+1)(1+1)=1+1+1+1,hence2=1+1=0 and
2z = 0 for all z € A;

2. let p be a prime ideal of A, and x ¢ p; then x(x — 1) =2?> —z =2 — 2 =
0Oep,soy=x—1¢€pand]l=zx—y; this means that x and p generate
A, thus p is maximal, and that « + p and 1 + p are the same element of
A/p, so A/p has two elements.

3. Let I = (a1, -+ ,a,) be a finitely generated ideal of A. We show by induc-
tion on n that I is principal. If n =1, it is true. Let J = (a1, ,ant1)-
The induction yields that (a1, - ,a,) is principal, so (a1, - ,a,) = (a)
and J = (a1) + (a). Now, any two elements z,y of A are multiple of
r4+y+ay w(r+y+ay) =22 +ay+rdy=a+ay+ary=1x+ 20y =T,
and y(x +y+ay) =yr+y>+ay? =y +y+ay =y+ 2wy =y, 50
J = (a1 + a+ aia).

NB 1t is interesting to show explicitly which is the element that generates the
ideal I = (a1,--+ ,ay,). In fact, the elements ay,-- - , a,, are all multiple of

n
a = E E Qjy Qg == - Ay s

k=1 i1 <io<---<ip

since a; = a;a,t = 1,2,...,n. To show this, observe thata;a; a;,---a;, =
@i, Giy - - - @, if and only if a; = a;, for some h, that is, if and only if a, already
appears in the product a;, a;, - - - a;,,. Now, there are (Z:}) products of k factors
@i, G, - - - @, in which a; does appear, and these products does not change when
multyplied by a;, so in the expression

a; g iy Gig ** -+ Qi s (1.11.1)
i1 <ig<--<ig

there are all the (}~}) products of k elements which contain a;, while the other

products have k + 1 elements. On the other hand, there are (kﬁl) — (Z:;)
products with k£ — 1 elements a;, a;, - - - a;,_, which do not contain a;, so in the

expression

a; Z Ay Qg =" Ay (1.11.2)

i<t <-<ig_1
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there are (kfl) — (Z:;) products with k elements a;, a;, - - - a;, , while the others

have k — 1 elements. But (kﬁl) — (Z:;) = (Zj), so these products are all the
products with k£ elements which contain a;.

Conclusion: in the expression of

n
aiazaiz Z @iy Qi+ * Qi (1.11.3)

k=1 i1<io<---<tp_1

for each k > 2, for each product in the inner sum which contains a;, and so
does not change when multyplied by it, there is a product in the inner sum for
k — 1 which is the same, so the only product which survives is the one for £k = 1
which contains (and actually is equal to) a;, multyplied by a;, and that is, in
fact, a;. O

Ezxercise 1.12. A local ring contains no idempotent exept 0 and 1.

Solution. Let A be a local ring, m its maximal ideal, and a an idempotent
element of A. If a € m, 1 — z is a unit, since Ry = m, so from (1 —z)(1 +z) =
1—22=1—xfollows 1 +2 =1and x = 0. If a ¢ m, a is a unit, and from

2 2p71 Vae=1. O

z* = x follows x =zxx~

FErxercise 1.13.

Exercise 1.14. In a ring A the set ¥ of all ideals in which every element is a
zero-divisor has maximal elements, and every maximal element of ¥ is a prime
ideal. Hence the set of zero-divisors of A is a union of prime ideals,

Solution. We need Zorn’s Lemma. Let S be a chain of ideals of X, and
u= U a.

The set u is an ideal: this is an easy check. Also, u € 3, that is, every element
of u is a zero-divisor: this is also an easy check. So u is an upper bound in %
for the chain S. By Zorn’s Lemma, 3 has maximal elements.

Now, let m be a maximal element of ¥, and x,y € A such that xy € m. We
shall prove that both ¢ m and y ¢ m yields a contradiction. If that is the
case, then m C m + (z) and m C m + (y), which means, being m a maximal
element of X, that m + (x) ¢ X, and m + (y) ¢ X, that is, there are elements
m', m” €m and a, b € A such that m’ + ax and m” + by are not zero-divisors.
But

m = (m’ + az)(m” + by) = m'm” + m'by + m"ax + abry € m
so m is a zero divisor, which is impossible by Proposition 1.1 of part II. O

Exercise 1.15. Let A be a ring, and let X be the set of all prime ideals of A. For
each subset E of A, let V(E) be the set of all prime ideals of A which contain
E. Then

1. if a = (E), then V(E) = V(a) = V(r(a));
2. V(0) =X, V(1) = 0;



3. if {E;},c; is any family of subset of A, then

V(UE) =V (E);

iel el

4. V(anb) =V (ab) = V(a) UV (b).
Solution.
1. e Of course V(a) C V(E) since E C a. On the other hand, a is
contained in every ideal which contains E, so V(E) C V(a).
e Of course V(r(a)) C V(a) since a C r(a). But r(a) is the intersection
of all the prime ideals which contain a, so if p is a prime ideal and
a C p, then also r(a) C p, hence V(a) C V(r(a)).
2. e V¥peXO0e€p, hence X C V(0) and X = V(0).
e Vpe X1¢p, hence V(0) = 0.

3. We have

peV(UE) — pQUEi ~— VielpDE
el i€l
= VielpeV(E) < peﬂV(Ei).
i€l

e Of course V (anb) C V (ab), since ab C aNb. On the other hand, if
p € V(ab) and v € anNb, then x € a and = € b, so 2% € ab, hence 22 € p
and z € p, since p is a prime ideal; then aNb C p and p € V(anb); hence
V (ab) CV (anb).

epeV(anb) < anNbCp < aCpVbCp,since p is a prime ideal,
sopeV(anb) < peV(a)UV(b).
O

FExercise 1.16.

Ezercise 1.17. Let A be a ring, X = Spec(A) and for each f € A let Xy be the
complement of V((f)) in X. The sets X; are a basis of the open sets for the
Zariski topology of X, and

1. X;NX,=Xg,

2. X;=0 < feRy
X;=X <= fisa unit

Xp =Xy = r((f)) =r9)

X is quasi-compact (that is, every open covering of X has a finite subcov-
ering)

oro W

6. each Xy is quasi-compact
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7. an open subset of X is quasi-compact if and only if it is a finite union of
sets Xy

Solution. If U is an open set in X, then U = V(F)’ for some F C A, so

U=v (U {f}> = (ﬂ V({f})) =Uvny=Ux

fEF feF feF feF

hence the sets X are a basis for the Zariski topology of X.
Furthermore

LpeX;nX, <= p¢V((f)UV((g) but V((£)UV((g)) = V((/)(9) =
V((fg)) thenp € X;NX, < pe Xy,

2. Xr=0 <= YpeXpeV((f) < WeX(f)Cp < fcRy

3.Xp=X <= WeXpdV((f) <= WeX(f)Lp < e Xf¢
p <= fis a unit

4. Xy C Xy = V((g) C V() < Yep e V((9) = p €
= WweX(@Cp=)Cp = (/) Srllv) = r(f) cr9)

5. To show that X is quasi-compact, it is enough to show that any covering
of X with sets Xy has a finite subcovering. So suppose that for some
F C A:

xX=vdsm = (ﬂ V({f})> = (V (U {f}>) =
feF fer feF

— V(FY

soVp € X F ¢ p, which means that F generates A, so there are elements
fi, foy -, fn in F and elements ay,aso, . ..,a, in A such that 1 = a1 f1 +
az fa + -+ + ap fn, hence

VpeXp D (fi,foo fu) = (f1) + (f2) +- -+ (fa)

and

VWpeXpeV (Z(ﬂ)) =V <U(fi>> = (ﬂ V((ﬁ)))

i=1
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6. If for some G C A it is

Xrc | X,
geqG

that means Vp € Xp O G = p 2 (f), hence (f) C r((G)) and for
some n € N we have f* € (G), then for some elements ¢1,92,...,9n
of G and ay,as,...,a, in A f" = a1g1 + asgs + -+ + apgn. S0 p €
V(g1,92,---,9n) = f™ € p = f € p, since p is prime, and p € V((f)),
that is V (g1, 92,---,9,) € V((f)). But

n /
V(gtha v 7gn) = (U Xg1>
i=1

SO

X5 C O X,,.
i=1

7. If Y is an open subset of X, then

v =JX;

fEF

for some F' C A, and if Y is compact there is a finite subcovering of Y:

vC|)Xs, fieFi=12..n

-

i=1

but we have also

LnJ Xfi, cY
i=1
hence
Y= LnJ Xt
i=1

and so a compact open subset of X is a finite union of sets Xy.
On the other hend, the subsets Xy are compact, and a finite union of compact
subsets is always compact. O

Ezercise 1.18. Let A be a ring, X = Spec(A4), z € X.
1. The set {x} is closed in X if and only if x is a maximal ideal of A.
2. {z} =V(2)
3. y€ m — xCy

4. X is a Tp space
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Solution.

1. If z is a maximal ideal of A, then x is the only element of X which contains
x, so V({z}) = {z} and {z} is closed in X. On the other hand, if {z} is
closed in X, it is {z} = V(F) for some E C A, which means that x is the
only prime ideal that contains F, so x is maximal.

2. Of course {2} C V(z), since V() is closed and = € V(z) so {2} C V().
On the other hand, if C is a closed subset of X and {z} C C, then
C =V(E) for some E C A and {z} CV(E),soz € V(E), E C z, and
V(z) C V(E) = C: V(z) is a subset of any closed subset of X which

contains {z}, so V(x) C {z}.
3. Since {z} =V(z),y € {z} <= yecV(z) < zCy.

4. Let z,y € X, x # y. Then either € y or y € . In the former case
y ¢ V(z), while z € V(z), so y € V(z)', ¢ V(z)'; in the latter case
zeV(y), y¢ Viy)

O
Ezercise 1.19. Spec(A) is irreducible if and only if 9y is a prime ideal.
Solution. Let X = Spec(A).

e Let Ry be a prime ideal, Uy, Us two non-empty open subsets of X. Then
U, = V{,Uy =V where both V;, Vs are proper closed subsetes of X, so
Ry ¢ V1 and Ry ¢ Vs and also Ry ¢ V3 U Vs, hence Vi U Vs is a proper
closed subset of z, and Uy N Uz = (V4 U V4,) is not empty.

o If My is not a prime ideal, there are two elements f,g € A such that
fg € Rn, v ¢ Ry,y € Ry. Then Xy and X are both non-empty and

Xpn Xy =WV((N) V() =(V((fg) =X =0.
O

Ezercise 1.20. Let A be a ring, X = Spec(A). The irreducible components of
X are the closed sets V(p), where p is a minimal prime ideal of A.

Solution. Let p € X. To prove that V(p) is irreducible, it is enough to prove
that every pair of non-empty open sets of V(p) of the form X; NV (p) have
non-empty intersection. So let Xy, X, be such that both Xy N V(p) # 0 and
X,NV(p) # 0. That means f ¢ p and g € p, so fg ¢ p and X¢gNp # 0. But
Xy =XrN Xy, hence XyNX,Np=(XrNp)N(X,Np)#0D.

Of course, if p is a minimal prime ideal of A, then V (p) is a maximal irreducible
subspace, that is, an irreducible component of X.

Now we have to prove that the sets V(p), where p is minimal prime ideal of A,
are the only irreducible components of X. So let C be an irreducible component
of X. Since C'is closed, it is C = V(a) for some ideal a of A. If a is not a prime
ideal, there are two elements f,g of A such that f ¢ a and g ¢ a but fg € a,
then Xy NV(a) #0, XgNV(a) #0, and (X;Np)N(X,Np)=0. O

Ezercise 1.21. Let ¢ : A — B be a ring homomorphism, X = Spec(A4),Y =
Spec(B).
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1. If f € A then gf)*_l(Xf) = Yy4(y), hence ¢* is continuous.

2. If a is an ideal of A then ¢* " (V(a)) = V((¢(a)))

3. If b is an ideal of B then ¢*(V (b)) = V(¢~1(b))
4. If ¢ is surjective, then ¢* is a homeomorphism of Y onto V (Ker(¢))

5. ¢*(Y) is dense in X if and only if Ker(¢) C Ry. In particular, if ¢ is
injective then ¢*(Y) is dense in X

6. If ¢ : B — C is another ring homomorphism, then (¢ o ¢)* = ¢* o ¢*
7. Let A be an integral domain with just one non-zero prime ideal p, and let

K be the field of fraction of A. Let B = (A/p) x K. Define ¢ : A — B by
¢(x) = (x 4+ p,x). Then ¢* is bijective but not a homeomorphism.

Solution.

Lge¢" (Xy) < ¢"(q) € Xy < f¢¢*(q) < o¢(f)¢q < q¢€

Yo(s)
2. egqe ¢ (V(
¢(a) C p(¢p~!

* € V((¢(a))
soaC o t(q

W) = ¢*(a) € V(@) > a C ¢
@) Ca=qe V(o) =V(s
)= 6(a) € q.= 67 (9(a)) C &
) = V(o) =g

“(q) = a C ¢ q) =
(a)))
“1q) but a € ¢ (¢(a))

¢
¢*(a) = ¢"(q) € € ¢ (V(w)
of

3. By Proposition (1.2) of Part II

¢*(V(b)>=V< N q).
q€P*(V (b))

Now, g € $*(V (b)) <= FJr:r € V(b) A q = ¢*(xr), then
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Rings and Ideals

Proposition 1.1. If xy is a zero-divisor, then at least one of the two elements
T,y 1S a zero-divisor.

Proof. If xy is a zero-divisor, then there is an element ¢ # 0 such that zyt = 0.
If yt = 0, then y is a zero-divisor; if yt # 0, then x is a zero-divisor. O

Proposition 1.2. Let A be a ring, X = Spec(A). If Y C X, then

Y=V ﬂp

pey
Proof. Let

Y=V ﬂp

pey

Of course Y C 177 since Y is closed and Y - Y. On the other hand, if C is
a closed subset of X and Y C C, then C = V(E) for some E C A, and
VppeY =peV(E)= FE Cp which means that

EC ()

and so Y C VQE) C. Thus Y C C for every closed subset C' of X that

contains Y,soY C Y. O
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