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Notation and Terminology

”Ring” shall always mean, if not otherwise stated, commutative ring with an
identity element. A ring omomorphism shall always, if not otherwise stated,
map the identity element of the domain to the identity element of the codomain.
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Chapter 1

Rings and Ideals

Exercise 1.1. Let x be a nilpotent element of a ring A. Show that 1 + x is a
unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.

Solution. If x is nilpotent, then xn = 0 for some n ∈ N. Now, using the identity

(1 + x)(1− x+ x2 − · · ·+ (−1)nxn) = 1 + (−1)n+1xn+1

we have

(1 + x)(1− x+ x2 − · · ·+ (−1)n−1xn−1) = 1 + (−1)nxn = 1

so 1 + x is a unit of A.
Let x be a nilpotent, and u a unit, then uv = 1 for some v ∈ A. The element

vx is also a nilpotent, and so 1+vx is a unit. Finally u+x = u+uvx = u(1+vx)
is a unit.

Exercise 1.2. Let A be a ring and let A[x] be the ring of polynomials in an
indeterminate x, with coefficients in A. Let f(x) = a0 +a1x+ · · ·+anx

n ∈ A[x].
Prove that

1. f(x) is a unit in A[x] if and only if a0 is a unit in A and a1, a2, . . . , an are
nilpotent.

2. f(x) is nilpotent if and only if a0, a1, . . . , an are nilpotent.

3. f(x) is a zero-divisor if and only if there exists a 6= 0 in A such that
af(x) = 0.

4. If f(x), g(x) ∈ A[x], then f(x)g(x) is primitive if and only if f(x) and g(x)
are primitive.

Solution.

1. (a) If a0 is a unit and a1, a2, . . . , an are nilpotent in A, than a0 is a unit
and a1x, a2x

2, . . . , anx
n are nilpotent in A[x], so f(x) is a unit in

A[x] for Exercise 1.1.

3



4 CHAPTER 1. RINGS AND IDEALS

(b) If f(x) is a unit in A[x], then there exists its inverse g(x) = b0 +
b1x+ · · ·+ bmx

m. The first coefficient in f(x)g(x) is a0b0, so it must
be a0b0 = 1, and a0 is a unit. Now we show by induction on r that

a1+r
n bm−r = 0, r = 0, . . . ,m (1.2.1)

Obviously anbm = 0, since this is the coefficient of xn+m in f(x)g(x),
so (1.2.1) holds for r = 0. Now suppose (1.2.1) holds for r =
0, 1, . . . , k; the coefficient of xn+m−(k+1) in f(x)g(x) is

anbm−k−1 + an−1bm−k + · · ·+ an−k−1bm = 0

and multiplying this by a1+k
n we get

a1+(k+1)
n bm−(k+1) + an−1a

1+k
n bm−k + · · ·+ an−k−1a

k
nanbm = 0;

using the inductive hypotesis

a1+(k+1)
n bm−(k+1) = 0,

so (1.2.1) is proved. In particular a1+m
n b0 = 0, but b0 is a unit, then

a1+m
n = 0, and an is nilpotent. Then anx

n is nilpotent in A[x], and,
being f(x) a unit, for Exercise 1.1 f(x) − anx

n = a0 + a1x + · · · +
an−1x

n−1 is also a unit. It follows that an−1 is nilpotent, and so on.

2. (a) If a0, a1, . . . , an are nilpotent, then a0, a1x, . . . , anx
n are nilpotent in

A[x], and so is f(x).

(b) If f(x) is nilpotent, then (f(x))k = 0 for some k ∈ N. The coefficient
of xnk in (f(x))k is ak

n, so it must be ak
n = 0, that is, an is nilpotent,

and so is anx
n, and also f(x) − anx

n = a0 + a1x + · · · + an−1x
n−1.

Hence an−1 is nilpotent, and so on.

3. Let g(x) = b0 + b1x + · · · + bmx
m be a polynomial of lowest degree such

that f(x)g(x) = 0. We prove by induction on r that

an−rg(x) = 0, r = 0, . . . , n (1.2.2)

Since anbm = 0, ang(x) has degree at most m−1, and as ang(x)f(x) = 0,
it must be ang(x) = 0, so (1.2.2) is proved for r = 0. Now suppose (1.2.2)
holds for r = 0, 1, . . . , k. The coefficient of xn+m−(k+1) in f(x)g(x) is

anbm−k−1 + an−1bm−k + · · ·+ an−k−1bm = 0

whence, since the induction yields

anbm−k−1 = an−1bm−k = · · · = an−kbm−1 = 0

we get an−(k+1)bm = 0. Again, an−(k+1)g(x) has degree less than m, and
since an−(k+1)g(x)f(x) = 0, it must be an−(k+1)g(x) = 0. So (1.2.2) is
proved. That is, aibj = 0, i = 1, . . . , n, j = 1, . . . ,m, which means that
bhf(x) = 0, h = 1, . . . ,m holds too.

4. Let f(x) = a0 + a1x+ · · ·+ anx
n, g(x) = b0 + b1x+ · · ·+ bmx

m ∈ A[x].
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(a) If f(x)g(x) is primitive, then its coefficients generate A, but these
coefficients are both in (a0, a1, . . . , an) and in (b0, b1, . . . , bm), so also
f(x) and g(x) are primitive.

(b) Suppose f(x) and g(x) are primitive, while f(x)g(x) is not. Then its
coefficient generate a proper ideal, contained in a maximal ideal M .
The coefficients of f(x) and g(x) are not all in M , so let i0 be such
that ai0 /∈ M while ai ∈ M, i = 0, . . . , i0 − 1 if i0 > 0, and let j0 be
such that bj0 /∈ M while bj ∈ M, j = 0, . . . , j0 − 1 if j0 > 1. The
coefficient of xi0+j0 in f(x)g(x) is

c = ai0bj0 +
i0−1∑
i=0

aibi0+j0−i +
j0−1∑
j=0

ai0+j0−jbj

where one of the two sums or both might not actually appear, if
i0 = 0 or j0 = 0 or both, and of course it is understood that ai = 0
if i > n and bj = 0 if j > m. In any case c and either sum that does
not vanish belong to M , so it should be ai0bj0 ∈ M too, which is
impossible.

Exercise 1.3. Generalize the results of Exercise 1.2 to a polynomial ring in
several indeterminates A[x1, . . . , xn].

Solution. Not yet available.

Exercise 1.4. In the ring A[x], the Jacobson radical is equal to the nilradical.

Solution. Since RN ⊆ RJ always holds in any ring, we only have to show that
in A[x] RJ ⊆ RN holds too. Let p(x) = a0 + a1x + · · · + anx

n ∈ RJ ; then
1−xp(x) = 1−a0x−· · ·−anx

n+1 is a unit by Proposition 1.9, and by Exercise
1.2 p(x) is nilpotent.

Exercise 1.5.

Exercise 1.6. Let A be a ring in wich every ideal not contained in the nilradical
contains a non-zero idempotent (that is, an element e such that e2 = e 6= 0).
Then the nilradical and the Jacobson radical are equal.

Solution. As in Exercise 1.4 we need only show that RJ ⊆ RN . Let x /∈ RN .
Then (x) * RN , so there is an element e ∈ (x) such that e2 = e 6= 0. Let
e = xt, then x2t2 = xt, xt(1− xt) = 0, which implies that 1− xt is not a unit,
so by Proposition 1.9 x /∈ RJ .

Exercise 1.7. Let A be a ring in wich every element x satisfies xn = x for some
n ∈ N, n > 1, depending on x. Then every prime ideal in A is maximal.
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Solution: first way. Let p be a prime ideal in A. We shall prove that A/p is a
field. Let < x >= (x+ p) 6= 0 in A/p. We have xn = x for some n ∈ N, n > 1,
then < x >n=< x > in A/p, so < x >n−1= 1, and also < x >n−2< x >= 1,
since n− 2 ≥ 0, thus < x > is a unit in A/p.

Solution: second way. Let p be a prime ideal in A, x /∈ p. We shall prove that
(x) + p = A, hence p is maximal. We have xn = x for some n ∈ N, n > 1, so
x(xn−1 − 1) = 0, then x(xn−1 − 1) ∈ p and also xn−1 − 1 ∈ p, be xn−1 − 1 = p.
So 1 = xn−1 − p with xn−1 ∈ (x) since n− 1 ≥ 1, and −p ∈ p.

Exercise 1.8. If A is a ring, A 6= 0, the set of prime ideals of A has minimal
elements with respect to inclusion.

Solution. We need Zorn’s lemma. Call Σ the set of all prime ideals of A. Let
{aλ}λ∈Λ be a chain in Σ. Then

a =
⋂
λ∈Λ

aλ

is an ideal. We show that a is prime, so that any chain in Σ has a lower bound
in Σ.

Let x, y ∈ A such that xy ∈ a. If x /∈ aα for some α ∈ Λ and y /∈ aβ for
some β ∈ Λ, then either aα ⊆ aβ or aβ ⊆ aα; in the former case y /∈ aα also
holds, in the latter case x /∈ aβ : both cases yield a contradiction, since xy ∈ aα

and xy ∈ aβ , and both aα and aβ are prime ideals. So either ∀λ ∈ Λx ∈ aλ and
x ∈ a or ∀λ ∈ Λ y ∈ aλ and y ∈ a, which proves that a is a prime ideal.

Thus Σ has minimal elements with respect to inclusion.

Exercise 1.9. If A is a ring, and a is a proper ideal of A, then a = r (a) if and
only if a is an intersection of prime ideals.

Solution. If r(a) = a, then by Proposition 1.14, a is an intersection of prime
ideals. If a is an intersection of prime ideals, then it is the intersection of all the
prime ideals which contain it, so, again by Proposition 1.14, a = r(a).

Exercise 1.10. Let A be a ring, RN its nilradical. The following facts are
equivalent:

i) A has exactly one prime ideal;

ii) every element of A is either a unit or a nilpotent;

iii) A/RN is a field.

Solution.

• i) ⇒ ii) Let p be the only prime ideal of A. Then RN = p, so for each
a ∈ A: if a ∈ p, then a is nilpotent, if a /∈ p, then a does not belong to
any prime ideal of A, thus it is a unit.

• ii) ⇒ iii) If a /∈ RN , then a is a unit, so RN is maximal and A/RN is a
field.
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• iii) ⇒ i) If A/RN is a field, then RN is maximal, so it is the only prime
ideal.

Exercise 1.11. If A is a boolean ring, then

1. 2x = 0 for all x ∈ A;

2. every prime ideal p is maximal and A/p has two elements;

3. every finitely generated ideal of A is principal.

Solution.

1. 1 + 1 = (1 + 1)2 = (1 + 1)(1 + 1) = 1 + 1 + 1 + 1, hence 2 = 1 + 1 = 0 and
2x = 0 for all x ∈ A;

2. let p be a prime ideal of A, and x /∈ p; then x(x− 1) = x2 − x = x− x =
0 ∈ p, so y = x − 1 ∈ p and 1 = x − y; this means that x and p generate
A, thus p is maximal, and that x + p and 1 + p are the same element of
A/p, so A/p has two elements.

3. Let I = (a1, · · · , an) be a finitely generated ideal of A. We show by induc-
tion on n that I is principal. If n = 1, it is true. Let J = (a1, · · · , an+1).
The induction yields that (a1, · · · , an) is principal, so (a1, · · · , an) = (a)
and J = (a1) + (a). Now, any two elements x, y of A are multiple of
x+ y + xy: x(x+ y + xy) = x2 + xy + x2y = x+ xy + xy = x+ 2xy = x,
and y(x + y + xy) = yx + y2 + xy2 = xy + y + xy = y + 2xy = y, so
J = (a1 + a+ a1a).

NB It is interesting to show explicitly which is the element that generates the
ideal I = (a1, · · · , an). In fact, the elements a1, · · · , an, are all multiple of

a =
n∑

k=1

∑
i1<i2<···<ik

ai1ai2 · · · aik
,

since ai = aia, i = 1, 2, . . . , n. To show this, observe thataiai1ai2 · · · aik
=

ai1ai2 · · · aik
if and only if ai = aih

for some h, that is, if and only if ai already
appears in the product ai1ai2 · · · aik

. Now, there are
(
n−1
k−1

)
products of k factors

ai1ai2 · · · aik
in which ai does appear, and these products does not change when

multyplied by ai, so in the expression

ai

∑
i1<i2<···<ik

ai1ai2 · · · aik
, (1.11.1)

there are all the
(
n−1
k−1

)
products of k elements which contain ai, while the other

products have k + 1 elements. On the other hand, there are
(

n
k−1

)
−
(
n−1
k−2

)
products with k − 1 elements ai1ai2 · · · aik−1 which do not contain ai, so in the
expression

ai

∑
i1<i2<···<ik−1

ai1ai2 · · · aik−1 , (1.11.2)
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there are
(

n
k−1

)
−
(
n−1
k−2

)
products with k elements ai1ai2 · · · aik

, while the others
have k − 1 elements. But

(
n

k−1

)
−
(
n−1
k−2

)
=
(
n−1
k−1

)
, so these products are all the

products with k elements which contain ai.
Conclusion: in the expression of

aia = ai

n∑
k=1

∑
i1<i2<···<ik−1

ai1ai2 · · · aik−1 , (1.11.3)

for each k > 2, for each product in the inner sum which contains ai, and so
does not change when multyplied by it, there is a product in the inner sum for
k− 1 which is the same, so the only product which survives is the one for k = 1
which contains (and actually is equal to) ai, multyplied by ai, and that is, in
fact, ai.

Exercise 1.12. A local ring contains no idempotent exept 0 and 1.

Solution. Let A be a local ring, m its maximal ideal, and a an idempotent
element of A. If a ∈ m, 1− x is a unit, since RJ = m, so from (1− x)(1 + x) =
1 − x2 = 1 − x follows 1 + x = 1 and x = 0. If a /∈ m, a is a unit, and from
x2 = x follows x2x−1 = xx−1, x = 1.

Exercise 1.13.

Exercise 1.14. In a ring A the set Σ of all ideals in which every element is a
zero-divisor has maximal elements, and every maximal element of Σ is a prime
ideal. Hence the set of zero-divisors of A is a union of prime ideals,

Solution. We need Zorn’s Lemma. Let S be a chain of ideals of Σ, and

u =
⋃
a∈S

a.

The set u is an ideal: this is an easy check. Also, u ∈ Σ, that is, every element
of u is a zero-divisor: this is also an easy check. So u is an upper bound in Σ
for the chain S. By Zorn’s Lemma, Σ has maximal elements.
Now, let m be a maximal element of Σ, and x, y ∈ A such that xy ∈ m. We
shall prove that both x /∈ m and y /∈ m yields a contradiction. If that is the
case, then m ⊂ m + (x) and m ⊂ m + (y), which means, being m a maximal
element of Σ, that m + (x) /∈ Σ, and m + (y) /∈ Σ, that is, there are elements
m′, m′′ ∈ m and a, b ∈ A such that m′ + ax and m′′ + by are not zero-divisors.
But

m = (m′ + ax)(m′′ + by) = m′m′′ +m′by +m′′ax+ abxy ∈ m

so m is a zero divisor, which is impossible by Proposition 1.1 of part II.

Exercise 1.15. Let A be a ring, and let X be the set of all prime ideals of A. For
each subset E of A, let V (E) be the set of all prime ideals of A which contain
E. Then

1. if a = (E), then V (E) = V (a) = V (r(a));

2. V (0) = X, V (1) = ∅;
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3. if {Ei}i∈I is any family of subset of A, then

V

(⋃
i∈I

Ei

)
=
⋂
i∈I

V (Ei) ;

4. V (a ∩ b) = V (ab) = V (a) ∪ V (b).

Solution.

1. • Of course V (a) ⊆ V (E) since E ⊆ a. On the other hand, a is
contained in every ideal which contains E, so V (E) ⊆ V (a).

• Of course V (r(a)) ⊆ V (a) since a ⊆ r(a). But r(a) is the intersection
of all the prime ideals which contain a, so if p is a prime ideal and
a ⊆ p, then also r(a) ⊆ p, hence V (a) ⊆ V (r(a)).

2. • ∀p ∈ X 0 ∈ p, hence X ⊆ V (0) and X = V (0).

• ∀p ∈ X 1 /∈ p, hence V (0) = ∅.

3. We have

p ∈ V

(⋃
i∈I

Ei

)
⇐⇒ p ⊇

⋃
i∈I

Ei ⇐⇒ ∀i ∈ I p ⊇ Ei

⇐⇒ ∀i ∈ I p ∈ V (Ei) ⇐⇒ p ∈
⋂
i∈I

V (Ei) .

• Of course V (a ∩ b) ⊆ V (ab), since ab ⊆ a ∩ b. On the other hand, if
p ∈ V (ab) and x ∈ a ∩ b, then x ∈ a and x ∈ b, so x2 ∈ ab, hence x2 ∈ p
and x ∈ p, since p is a prime ideal; then a∩ b ⊆ p and p ∈ V (a∩ b); hence
V (ab) ⊆ V (a ∩ b).

• p ∈ V (a ∩ b) ⇐⇒ a ∩ b ⊆ p ⇐⇒ a ⊆ p ∨ b ⊆ p, since p is a prime ideal,
so p ∈ V (a ∩ b) ⇐⇒ p ∈ V (a) ∪ V (b).

Exercise 1.16.

Exercise 1.17. Let A be a ring, X = Spec(A) and for each f ∈ A let Xf be the
complement of V ((f)) in X. The sets Xf are a basis of the open sets for the
Zariski topology of X, and

1. Xf ∩Xg = Xfg

2. Xf = ∅ ⇐⇒ f ∈ RN

3. Xf = X ⇐⇒ f is a unit

4. Xf = Xg ⇐⇒ r((f)) = r((g))

5. X is quasi-compact (that is, every open covering of X has a finite subcov-
ering)

6. each Xf is quasi-compact
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7. an open subset of X is quasi-compact if and only if it is a finite union of
sets Xf

Solution. If U is an open set in X, then U = V (F )′ for some F ⊆ A, so

U = V

⋃
f∈F

{f}

′

=

⋂
f∈F

V ({f})

′

=
⋃

f∈F

V ((f))′ =
⋃

f∈F

Xf

hence the sets Xf are a basis for the Zariski topology of X.
Furthermore

1. p ∈ Xf ∩Xg ⇐⇒ p /∈ V ((f))∪V ((g)) but V ((f))∪V ((g)) = V ((f)(g)) =
V ((fg)) then p ∈ Xf ∩Xg ⇐⇒ p ∈ Xfg.

2. Xf = ∅ ⇐⇒ ∀p ∈ X p ∈ V ((f)) ⇐⇒ ∀p ∈ X (f) ⊆ p ⇐⇒ f ∈ RN

3. Xf = X ⇐⇒ ∀p ∈ X p /∈ V ((f)) ⇐⇒ ∀p ∈ X (f) * p ⇐⇒ ∀p ∈ Xf /∈
p ⇐⇒ f is a unit

4. Xf ⊆ Xg ⇐⇒ V ((g)) ⊆ V ((f)) ⇐⇒ ∀p p ∈ V ((g)) ⇒ p ∈ V ((f))
⇐⇒ ∀p ∈ X (g) ⊆ p ⇒ (f) ⊆ p ⇐⇒ (f) ⊆ r((g)) ⇐⇒ r((f)) ⊆ r((g))

5. To show that X is quasi-compact, it is enough to show that any covering
of X with sets Xf has a finite subcovering. So suppose that for some
F ⊆ A:

X =
⋃

f∈F

Xf .

Then

X =
⋃

f∈F

V ({f})′ =

⋂
f∈F

V ({f})

′

=

V
⋃

f∈F

{f}

′

=

= V (F )′

so ∀p ∈ X F * p, which means that F generates A, so there are elements
f1, f2, . . . , fn in F and elements a1, a2, . . . , an in A such that 1 = a1f1 +
a2f2 + · · ·+ anfn, hence

∀p ∈ X p + (f1, f2, . . . , fn) = (f1) + (f2) + · · ·+ (fn)

and

∀p ∈ X p ∈ V

(
n∑

i=1

(fi)

)′

= V

(
n⋃

i=1

(fi)

)′

=

(
n⋂

i=1

V ((fi))

)′

=
n⋃

i=1

V ((fi))′ =
n⋃

i=1

Xfi
.
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6. If for some G ⊆ A it is

Xf ⊆
⋃
g∈G

Xg

that means ∀p ∈ X p ⊇ G ⇒ p ⊇ (f), hence (f) ⊆ r((G)) and for
some n ∈ N we have fn ∈ (G), then for some elements g1, g2, . . . , gn

of G and a1, a2, . . . , an in A fn = a1g1 + a2g2 + · · · + angn. So p ∈
V (g1, g2, . . . , gn) ⇒ fn ∈ p ⇒ f ∈ p, since p is prime, and p ∈ V ((f)),
that is V (g1, g2, . . . , gn) ⊆ V ((f)). But

V (g1, g2, . . . , gn) =

(
n⋃

i=1

Xgi

)′

so

Xf ⊆
n⋃

i=1

Xgi
.

7. If Y is an open subset of X, then

Y =
⋃

f∈F

Xf

for some F ⊆ A, and if Y is compact there is a finite subcovering of Y :

Y ⊆
n⋃

i=1

Xfi
, fi ∈ F, i = 1, 2, . . . , n;

but we have also
n⋃

i=1

Xfi
⊆ Y

hence

Y =
n⋃

i=1

Xfi

and so a compact open subset of X is a finite union of sets Xf .
On the other hend, the subsets Xf are compact, and a finite union of compact
subsets is always compact.

Exercise 1.18. Let A be a ring, X = Spec(A), x ∈ X.

1. The set {x} is closed in X if and only if x is a maximal ideal of A.

2. {x} = V (x)

3. y ∈ {x} ⇐⇒ x ⊆ y

4. X is a T0 space
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Solution.

1. If x is a maximal ideal of A, then x is the only element of X which contains
x, so V ({x}) = {x} and {x} is closed in X. On the other hand, if {x} is
closed in X, it is {x} = V (E) for some E ⊆ A, which means that x is the
only prime ideal that contains E, so x is maximal.

2. Of course {x} ⊆ V (x), since V (x) is closed and x ∈ V (x) so {x} ⊆ V (x).
On the other hand, if C is a closed subset of X and {x} ⊆ C, then
C = V (E) for some E ⊆ A and {x} ⊆ V (E), so x ∈ V (E), E ⊆ x, and
V (x) ⊆ V (E) = C: V (x) is a subset of any closed subset of X which
contains {x}, so V (x) ⊆ {x}.

3. Since {x} = V (x), y ∈ {x} ⇐⇒ y ∈ V (x) ⇐⇒ x ⊆ y.

4. Let x, y ∈ X, x 6= y. Then either x * y or y * x. In the former case
y /∈ V (x), while x ∈ V (x), so y ∈ V (x)′, x /∈ V (x)′; in the latter case
x ∈ V (y)′, y /∈ V (y)′.

Exercise 1.19. Spec(A) is irreducible if and only if RN is a prime ideal.

Solution. Let X = Spec(A).

• Let RN be a prime ideal, U1, U2 two non-empty open subsets of X. Then
U1 = V ′

1 , U2 = V ′
2 where both V1, V2 are proper closed subsetes of X, so

RN /∈ V1 and RN /∈ V2 and also RN /∈ V1 ∪ V2, hence V1 ∪ V2 is a proper
closed subset of x, and U1 ∩ U2 = (V1 ∪ V2)′ is not empty.

• If RN is not a prime ideal, there are two elements f, g ∈ A such that
fg ∈ RN , x /∈ RN , y /∈ RN . Then Xf and Xg are both non-empty and
Xf ∩Xg = (V ((f)) ∪ V ((g)))′ = (V ((fg)))′ = X ′ = ∅.

Exercise 1.20. Let A be a ring, X = Spec(A). The irreducible components of
X are the closed sets V (p), where p is a minimal prime ideal of A.

Solution. Let p ∈ X. To prove that V (p) is irreducible, it is enough to prove
that every pair of non-empty open sets of V (p) of the form Xf ∩ V (p) have
non-empty intersection. So let Xf , Xg be such that both Xf ∩ V (p) 6= ∅ and
Xg ∩ V (p) 6= ∅. That means f /∈ p and g /∈ p, so fg /∈ p and Xfg ∩ p 6= ∅. But
Xfg = Xf ∩Xg, hence Xf ∩Xg ∩ p = (Xf ∩ p) ∩ (Xg ∩ p) 6= ∅.
Of course, if p is a minimal prime ideal of A, then V (p) is a maximal irreducible
subspace, that is, an irreducible component of X.
Now we have to prove that the sets V (p), where p is minimal prime ideal of A,
are the only irreducible components of X. So let C be an irreducible component
of X. Since C is closed, it is C = V (a) for some ideal a of A. If a is not a prime
ideal, there are two elements f, g of A such that f /∈ a and g /∈ a but fg ∈ a,
then Xf ∩ V (a) 6= ∅, Xg ∩ V (a) 6= ∅, and (Xf ∩ p) ∩ (Xg ∩ p) = ∅.

Exercise 1.21. Let φ : A → B be a ring homomorphism, X = Spec(A), Y =
Spec(B).
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1. If f ∈ A then φ∗−1(Xf ) = Yφ(f), hence φ∗ is continuous.

2. If a is an ideal of A then φ∗−1(V (a)) = V ((φ(a)))

3. If b is an ideal of B then φ∗(V (b)) = V (φ−1(b))

4. If φ is surjective, then φ∗ is a homeomorphism of Y onto V (Ker(φ))

5. φ∗(Y ) is dense in X if and only if Ker(φ) ⊆ RN . In particular, if φ is
injective then φ∗(Y ) is dense in X

6. If ψ : B → C is another ring homomorphism, then (ψ ◦ φ)∗ = φ∗ ◦ ψ∗

7. Let A be an integral domain with just one non-zero prime ideal p, and let
K be the field of fraction of A. Let B = (A/p)×K. Define φ : A→ B by
φ(x) = (x+ p, x). Then φ∗ is bijective but not a homeomorphism.

Solution.

1. q ∈ φ∗−1(Xf ) ⇐⇒ φ∗(q) ∈ Xf ⇐⇒ f /∈ φ∗(q) ⇐⇒ φ(f) /∈ q ⇐⇒ q ∈
Yφ(f)

2. • q ∈ φ∗−1(V (a)) ⇒ φ∗(q) ∈ V (a) ⇒ a ⊆ φ∗(q) ⇒ a ⊆ φ−1(q) ⇒
φ(a) ⊆ φ(φ−1(q)) ⊆ q ⇒ q ∈ V (φ(a)) = V ((φ(a)))

• q ∈ V ((φ(a))) ⇒ φ(a) ⊆ q ⇒ φ−1(φ(a)) ⊆ φ−1(q) but a ⊆ φ−1(φ(a))
so a ⊆ φ−1(q) = φ∗(q) ⇒ φ∗(q) ∈ V (a) ⇒ q ∈ φ∗−1(V (a))

3. By Proposition (1.2) of Part II

φ∗(V (b)) = V

 ⋂
q∈φ∗(V (b))

q

 .

Now, q ∈ φ∗(V (b)) ⇐⇒ ∃r : r ∈ V (b) ∧ q = φ∗(r), then

φ∗(V (b)) = V

 ⋂
r∈V (b)

φ∗(r)

 = V

 ⋂
r∈V (b)

φ−1(r)

 =

= V

φ−1

 ⋂
r∈V (b)

(r)

 = V
(
φ−1(r(b))

)
=

= V
(
r(φ−1(b))

)
= V

(
φ−1(b)

)
.
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Part II

Notes
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Chapter 1

Rings and Ideals

Proposition 1.1. If xy is a zero-divisor, then at least one of the two elements
x, y is a zero-divisor.

Proof. If xy is a zero-divisor, then there is an element t 6= 0 such that xyt = 0.
If yt = 0, then y is a zero-divisor; if yt 6= 0, then x is a zero-divisor.

Proposition 1.2. Let A be a ring, X = Spec(A). If Y ⊆ X, then

Y = V

⋂
p∈Y

p

 .

Proof. Let

Ỹ = V

⋂
p∈Y

p

 .

Of course Y ⊆ Ỹ , since Ỹ is closed and Y ⊆ Ỹ . On the other hand, if C is
a closed subset of X and Y ⊆ C, then C = V (E) for some E ⊆ A, and
∀p p ∈ Y ⇒ p ∈ V (E) ⇒ E ⊆ p which means that

E ⊆
⋂

p∈Y

p

and so Ỹ ⊆ V (E) = C. Thus Ỹ ⊆ C for every closed subset C of X that
contains Y , so Ỹ ⊆ Y .

17
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